N

Office of Naval Research

Contract N00014-6\7-A-0298-0006 NR-372-012

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
- Grant NGR 22-007-088

A DISCRETE-TIME DIFFERENTIAL DYNAMIC
PROGRAMMING ALGORITHM WITH APPLICATION
TO OPTIMAL ORBIT TRANSFER

Stanley B. Gershwin & David H. Jacobson

August 1968

~ Technical Report No. 566

This document has been approved for public
release and sale; its distribution is unlimited.

Division of Engineering and Applied Physics
Harvard University + Cambridge, Massachusetts

69 10120
NASA CR 9747



Office of Naval Research
Contract N00014-67-A-0298-0006

NR - 372 - 012

National Aeronautics and Space Administration

Grant NGR 22-007-068

A DISCRETE-TIME DIFFERENTIAL DYNAMIC PROGRAMMING

ALGORITHM WITH APPLICATION TO OPTIMAL ORBIT TRANSFER

By

Stanley B. Gershwin and David H. Jacobson

Technical Report No, 566

This document has been approved for public
release and sale; its distribution is unlimited,

August 1968

The research reported in tlis document was made posdible through
support extended the Division of Engineering and Applied Physics,
Harvard University by the U. S, Army Research Office, the U. S,
Air Force Oiffice of 'Scientific. Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A-0298-0006, 0005, and 0008 and bythe Nafional
Aeronautics and Space Adniinistration under Grant NGR '22-007-068,

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts




Acknowledgements

The authors wish to thank Professor A. E. Bryson, Jr. for his
valuable suggestions, and Dr. R. G. Tobey of IBM for the use of the
FORMAC system, which was helpful in manipulation of the rather
complicated algebraic expressions that appear in this paper.

S. B. Gershwin wishes to thank D. H. Jacobson for his patience

and accessability during the preparation of this report.

- -




A DISCRETE-TIME DIFFERENTIAL DYNAMIC PROGRAMMING
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ABSTRACT

Recently, the notion of Differential Dynamic Programming has
been used to obtain new second-order algorithms for solving non-linear
optimal control problems. (Unlike conventional Dynamic Programming,
the Principle of Optimality is applied in the neighborhood of a nominal,
non-optimal, trajectory.) A novel feature of these algorithms is that
they permit strong variations in the system trajectory.

In this paper, Differential Dynamic Programming is used to
develop a second-order algorithm for solving discrete-time dynamic
optimization problems with terminal constraints. This algorithm also
utilizes strong variations and, as a result, has certain advantages
over existing discrete-time methods.

A non-linear computed example is presented, and comparisons
are made with the results of other researchers who have solved this
problem.

The experience gained during the computation has suggested
some extensions to an earlier, previously published Differential Dynamic
Programming algorithm for continuous time problems. These extensions,

and their implications are discussed.
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Notation

Vectors are columns; the scalar product of a and b, where

a) B
a-= . b= .
a b
n n
n

is aTb or bTa and is equal to Ziaibi' The derivative of a scalar by a
i=
vector is a row, and is written:

- 8V _ 8V LA
Vi = ax'[aaal ""’axn]

The second derivative of a scalar by vectors is a matrix:

8%V 9°v T
8x18k1 8x18km
v . = BZV - . .
xk 9x ok 2 2
\' 8V
9x 98k et ox 0ok
n 1 n m

where x is an n-vector and k is an m-vector.

Thus a second-order Taylor expansion will be written:

1. T
V(x + 0x,k + 0k) = V(x,k) + vxéx + Vk5k + —2-5x Vxxbx

T 15 T
+ Ox vxkék + Eﬁk kaék

-y=



L_Introduction

Jacobson [1], [2] has derived a second-order algorithm for solving
continuous time optimal control problems using Differential Dynamic
Programming. This algorithm differs from other second-order or
second-variation algorithms, [4], [5], [6], [7], [9], [10], [11], [14] in
that it is derived using global variations in control (strong variations
m fh:e trajectc.:ry)‘.‘ |

In this paper a similar algorithm is developed for solving discrete-
time dynamic optimization pfoblems with terminal constraints. The
new algorithm uses the notion of strong variations and hence, as in
the case of the continuous time algorithm, has advantages over existing
discrete-time algorithms [4], [5], [9], [14]. The algorithm can be used
to solve continuous time problems that are approximated by difference
equations.

A non-linear numerical example is presented and comparisons
are drawn with McReynolds [4], [5] and others [7], [8], who have solved
this problem previously, using other methods. The experience gained
in the numerical computation has suggested extensions to the continuous
algorithms in[1]and[2]. In particular, the 'step-size adjustment'
technique is generalized by the introduction of additional criteria for
ensuring that the 'trial new trajectory', at each iteration, is sufficiently
close to the current nominal trajectory to guarantee an improvement in

cost a.nd/or terminal error.



II. Derivation of the Discrete Algorithm
II. 1. Statement of the General Problem
The problem to be solved is the following: if x_,..., %\ are vector

quantities which satisfy

(1) X = f(xi, u., ti)

and %o is given, find the vectors Uy ee s UNa] to minimize the scalar
-1

N
(2) V= Z Lix,,u,t) + Flxy)
&

[

where the solution must satisfy the (vector) equality constraint

(3) 8(xy) = 0
N and t,s---,ty are known quantities, and a nominal control 'Go, v ’GN-I
is given.
Defining
(4) Vix_, Kt ) = V+kle
the equivalent problem of finding Uy, Uy tO minimize V(Xo, k., to)+

and k to satisfy (3) is solved in succeeding sections. A nominal value
of k, k, is assumed given.
II.2. Outline of thé Solution

The optimal return function V satisfies Bellman's "Principle of
Optimality" [3], which in this case is:

(5) Vix;, k,t,) = m{li.n [L(xi, u,t) + Vix, 1k ti+1)]
1

fori=0,...,N-1.
Regarded in terms of displacements 5xi, 5xi+1, and Ok from the

nominal trajectory,

+ It is assumed that a minimum exists.
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X4 = X1 T 0%y
k = k + 0k
and (5) becomes
(6) V(xi + 5xi,k + Ok, ti) = rrllllin[L(xi + Gxi,ui,ti)
V(e F Ox, 1ok + Ok,t. 1)]

The algorithm is derived from equation (6) in the following sequence
of steps:
1. Expand both sides in Taylor series about ;i’ k and ;“_1 in Gxi,
Ok and Ox_ ;.
2. Relate GX:H_I to 5xi.
3. Perform the indicated minimization with respect to u, in two
stagéls.
A. Find u;k which minimizes the right side of (6) with
Gxi = 0 and 0k = 0.
B. Expand about u;k in 5ui with Gxi and 0k non-zero, and
minimize wj.th respect to Gui. This will give 5ui as
‘a function of 5xi and Ok.
4. Equate coefficients of like powers of Gxi and 0k to obtain
difference equations in V}i{, Vl-ic’ etc.
It is assumed that 5xi, 5xi+1 and Ok will be sufficiently small
that all 'I‘aylo;f expansions can be terminated at second-order terms.
II. 3. Solution
Following the prescription of the previous section, the left side

of (6), when expanded in a Taylor series, is,

_3...



(7) V(SEi + 5xi,i + Ok, t,) = V(x k, t. )t i V(x k,t, )Gx * 5% V(x k,t. )C‘n
1, T 8% . — —
+ Eéxi — V(xi,k, t:i)5xi
ox
T 8% = ©
+ le Bx ok V(xi’k’ ti)ék
1 T 82 - =
+ =0k = V(x,,k,t.)0k + ...
2 akZ i’

The reader should note that V(;i,-lz, ti) is the minimal value of the
return function obtainable with initial conditions at ;i’ t, and with
k = k. It is not the same as V(Ei,iZ, ti)’ the value of the return

function calculated along the nominal trajectory, starting from t..

Symbolically,
N-1
- = .\ : N =T
(8) V(x,K,t,) = o, R Z Lisxj, uj, t) + Fley) + K 00xy)
j=i

where X110 Xy satisfy (1), and X, =X,

However,
(9) V(x Z ;G +F(x)+k 8(x))
’EN-I is the nominal control sequence and thus,
is the nominal trajectory (which satisfies (1) with
u, =IIJ., j=1i,...,N-1).

Acknowledging the difference between V(;i,i, ti) and V(;i,i, t.),
define |

(10) a(x kjt.) = V(x kt)-V(x kt)



To simplify notation, let

i i
3 = i
Bx V(xi,k, t1) = Vx R etc
Then
(10") al = vi- ¥
and applying (10) to (7), obtain
(11) V(x. + 6x., kK + Ok, t.) =a" + V' + V! 0x, + VI Ok + LoxTvi ox.
i i i x i k 2 771 Txx i

T,,1 ls T, i
+ 0k, V_ Ok + 50k 7V, Ok + ...
Similarly, expanding the quantity to be minimized in equation (6)

about x., E, x.
1

i+l?
12)  plepix FOx L Ox +altl T vitle, 4 vitle
+ & 5 ;I-;-l 1+16 o ¥ 5 'I-;.l 1+15k + GkTV1+15k ;.
where, as above, a i+l + V1+1 VH-1
Expression (12) is an infinite series in Gxi, 5xi+1 and 0k. But

it is clear that there is a relationship between 5xi and 5xi+1 through
equation (l). This relationship may be used to eliminate either 5xi

or 5xi+I from (12), but to conform with equation (11), 6xi+1 will be

removed.

41 = Hxp 05, )

X 41 = fx

i 90 &)

+ L, and its derivatives are evaluated at x1 u t The control u. is
yvet to be determined. t




Thus, 6xi+l = f(xi’ui’ti) - f(;i’ui’ti) or,
(13) 5xi+1 = f(xi + éxi’ui’ti) - f(xi’ui’ti)
In equation (13), u, is perfectly general. It will later be fixed

by the minimization operation of equation (6).

Expanding (13) about ;i’ and defining

= f(x.,u,,t.
(x1’u1’t1)

obtain

(14) 0x = (fi - ?.'-1) + fi 0x. + léfoi 0x. + .
i+l x i 2 7i'xx i 77

where the derivatives of f are evaluated at (;i’ui’ti)'

Substituting (14) into (12), obtain

(15) L4 aitl iy V1+1(f T+ 3 (f - 1)Tvi:;1(fi - Th
+[LL + V1+1f + L V1+1(f1 )0x,
+ [v}{+1 + (£ - 1+1]5k

F 0x T vitlay
i x xk

15 T itl
t3 Ok ka 0k

. . T
+ %éx.T[L1 yvitld £ V1+1
1 XX X XX

£oe(d -1 Tyitld jox,

Recall that equation (5) has now been transformed to

(16) "r.h.s. of equation (11) = min{expression(15}"
u-
i

-6-



As suggested earlier, the minimization in (16) may be performed
in two stages.
*
First u, is found, which minimizes (15) with 5xi = 0 and 0k = 0,

s«
i.e., u, minimizes

(17) IAPLLL I VL V;’Ll(:f1 -t + %(fi - Ti')Tvi;'{l(fi Ty,

(The terms not printed in (17) are of third and higher order in
(f1 - ?1), and thus are assumed negligible.)
For convenience, define
i = k= i il
(18) H = H(xi’ui’k’ ti) =L + VX f

In (18), and for the rest of this paper, all functions of u, are

%
evaluated at u, .

Note that,
sl .
g o= 1l o4 vitld
X X X
H =LY 4+ V1+1 ! , etc
XX XX X XX

*
Since (17) is at a minimum when evaluated at u,, its first

derivative with respect to u, must be zero;

i i =i, T itl i _
(19) Ho+ (£ -1 v £ =0

© o In additic‘m,’ the second derivative of (17) (to be defined as A) must

ok
be positive definite at U, = u

15
(20) a=m 4+ vitld L d - fTyltld S
uu u XX u g XX uu

(The‘third term in (20) does not appear in the 'weak variation' algorithms

of [4], [5], [9], [14]).



* %
Expanding (15) about u,, with u, = u + Gui,

obtained, using (19) and (20).

(21) Lyt ity Vi:l(fl -+ %(fl
i 4T i+l 4 =
+ [H + ££ v - TH]0x,
X X XX 1
+ [Vi:l + (:E]'L 1+1]tSk
T .
§Ox L g yitley
1 x xk
T
¥ ould yitlg,
iu xk

. T
+ O [HE 4+ £ 1+1f F (£ -
1 Xu X

. .T
+ 2 Ox [HE 4 £ Vi 4
1 XX X
1. T,it+l
+ Eék ka Ok
+ %Gu:rAéu.
1 1
Terms of order (5xi)3, (Gui)3, (5k)3

in (21).+

-7 Tyitld 6,

the following is

} Ti)TViH(fi - 1)

XX

HTvitld 15y,
XX Xu 1

XX XX i

or greater have been ignored

The second stage of the minimization is accomplished when (21)

is minimized with respect to Gui.

Taking the first derivative of (21) with respect to 5u-i and setting

it to zero, obtain

+ It is assumed that 5x 5u and 0k are small enough to justify this

truncation.
-8 -



(22) Gui = ﬁléxi + [325k

where
(2’3) 4 13‘ _ -v:A-l[Hi :I_fiT 1+1f1 +(f 1)TV1+1 i ]
1~ ux u XX ux
.T
_ - -1 1 i+1
(24) By ==d TV o

Equation (22) is a linear feedback perturbation control law. It
is sufficient to consider Gui to be linear in Gxi and 0k because on |
substituting an expression of higher order than (22) into (21), terms of
higher order than quadratic would appear.

On substituting (22) into (21), the result is
(25) Lot e P vt L) e - T TV - T

R | i+l 4
+.[HX F (£ - T v fx]c‘ixi

i+l

-1, T 1+1
K K 10

vt - T K

+ Ox, [f; Vi 6T ap, 10k

1+1f1 F (8 - Thyitld prlrapl]éxi

XX XX

oIt sdy
1 XX

i+l

+20kT [V - B 48,10k

Expression (25) is the minimum of (15) with respect to u.
Thus, expression (25) is equal to the r.h.s. of equation (11), by
(16). Therefore, coefficients of like powers of 5xi and 0k must be

equal.



Noting that
(26) vi=vtl Tl

equating (11) and (25) produces the following difference equations, valid

fori=0,...,N-1.

(27) sl sat e o w2 - P TV - T
XX
(28) vi =gl o4 f - THTvitE
X X XX X
i _ il , 4 Toikl
(29) vp = virb e - T TV
. T
i _ 4 i+l T
(30) ka - f:{ ka [31 ABZ
i _ i+l _ T
(31) Vik = Vi " Pz2P2

. .T .
i i+l 4 i =iy ,itl T
Hxx * fic Vxx fx (£ £ )vxx f:(x " pl A,31

(32) \'

XX
The boundary conditions are applied at i = N, and are the same

as in [1]. They are found by expanding

- - — — T -
Vi + GXN,k + Ok, t ) = Fxy + GxN) + (k + Ok) B(xy + GxN)
to second-order in a Taylor series in 5xN and 0k. Because this is the

N

last time step, V' = VN. Thus,

(33) a =90

and, from the expansion
b b

N_ o= o=Ty =
(34) Vx = Fx(xN) + k Gx(xN)
N _ . T—
(35) Vk 5] (XN)
(36) vfk - e;f(;N)
N _
(37) ka =0

-10-



YN L = .1 Te (o
(38) Vo =F () tk e (x)

Thﬁs, if we "integrate" equations (27)-(32) from i = N-1 to 0 with
eciuations (33)-(38) as boundary conditions, then equations (19) and (22) show
how :to calculate’ u, = u:< + Gui to get optimal improvement on per-
fpzimange iv(ndex V(xo, k, to). | |

These results are bnly meaningful if the second-order truncations

of the Taylor series above are good approximations of the full expansions.

Thus 5xi, 5x1+1,

- * - _ . i - _i — - * - ~ !
on Aui =u - u except that f f° = f(xi,ui , ti) f(xi’ u,, ti) must be

5k, and Gui must be small. There is no restriction

sufficiently small to guarantee the smallness of 6Xi+1'

III. Comparison with and Extensions of Jacobson's Results
II1.1. Comparison and Discussion
The case in which the discrete problem is an Euler discretization

of a continuous problem is of interest. In that case,

(39) flx;,u,,t,) = x; + At“f'(xi,ui,ti)
and
(40) Lix;,ug,t;) = 'L'(xi, ug, ;) At
Clearly,
x(t. + at) - x(t.) X1 T X
1 W) = L i im_ g, i+ i _
(41) x(t;) AltTO At Al,:::) At flx; u;5t,)
and
N-1 N-1~ tN~

(42) lim Z L(Xi’ui’ti) = lim ZL(xi’ui’ti)At = § L(x(t), u(t), t)dt

a0 a0 L t

N-co Noow '~ ©

if the discretization is done with care.

-11~



It is reasonable to expect that if the transformations (39) and
(40) are applied to the results of the previous section and the limit
is taken as At—0, equations should be obtained which solve the analo-
gous continuous problem.

Jacobson [1] has solved that problem, and the statement of the
problem, as well as the solution are reproduced below, in Appendix A.

Note that

- Tlac+ viMls 4 atd)
X 1

where the same abbreviated notation as in the last section is used.

Thus

(45) = (Tl + V1+1f )at + v1+1 - filat + V1+1

Then, according to (20)

(44) A=T at+ (andEViTIE + @ -F )v“’l"1 ]
uu u XX u uu
Define
(45) A= a/at
which will be written
o e i
(46) A=H + A'At
uu
for clarity.
From (23) and (45),
~=1,~i "‘iT i+l ~-1 i T i+l 1+1 =i i+l
(47) By =-4a (H, +1 V y - 2 NE v + (B - STHTyitld .
ux u XX u XX XX ux

Similarly, from (24),
_ -~_1~‘
(48) B, = -4 f; \Y%

In the same manner, applying (39), (40), (43), (45), (47), and (48)

to (27)-(32), the following are simply obtained.

-12-



: a -—a il FT il T
(49) =0 -H +5(f - 1)V (E - That
i+l i
v \' ..
(50) __Xx — x il (# fl)V::;{1+( f1)TV1+1fx at
i+l i
VTt - v - .
(51) T el R
i+1 i
Vit - T .
xk xk _# i+l _
(52) - At 'fl Vik p}lAﬁz
i+1 i
Vit - v
- kk kk T~
(53). “Tar - TByaB,
i+1 i
vitt - v ” T . N
XX xx _ i ~i i+l i+1~ ~
(54) At - Hxx * fx Vxx * Vxx f:{ + ﬁ1 Ap1
T +14 i T itl%
+At[f v1 +(f ) vt ]
XX XX

Jacobson's [1] equations for Byr By 2, Vo, Vi, Voiy Vi, and
Vxx are reproduced below in Appendix A. Inspection will reveal
agreement between tho’se and (47)-(54) as At—0.

It should be noted that although the discrete f, 1., and H are
related to their respective continuous counterparts through (39),
(40), and (43), the discrete a, '\7, derivatives of V, [31, and f32 directly
approximéte the continuous quantities. As At—0, the discrete and
continuous versions of the latter quantities approach one another.

Equations (39) and (40) and the transformations that resulted
from them were used to show the connection between the present
discrete equations and the earlier [1] continuous equations. However,

cases may exist where (39) and (40) are useful numerical methods

with which to solve a continuous problem.+ Then, (47)-(54) contain

+ Continuous-time problems which are particularly sensitive to u may
require a large number of small time steps when the algorithms of [1],
[2] are used. Then, since At is small, sufficient integration accuracy
may be obtained from an Euler scheme. See [2, page 17].

-13-



the full dependence on At, which involves terms of order At and higher.
It may be worth while to retain high order terms [14].

Also, (47)-(54) indicate that some of the arguments of the
right sides are to be evaluated at time i+l, and others must be
evaluated at time i. A simple Euler discretization of the continuous
time algorithm [1], [2] would evaluate all arguments at time i+l.

It may be possible to obtain more useful versions of (47)-(54)
by replacing (39) and (40), the Euler discretizations of f and L, by
a more sophisticated, accurate scheme.

III. 2, Description of the Algorithm

The discrete algorithm is very similar to the continuous
algorithm [1, section 4.8], and is outlined in Flow Chart II.

The algorithm is a successive approximation process, and
each appi'oximation has two stages. In the first stage, k is kept
constant, and optimization takes place with respect to u., without
regard to the value of 8. In the second, Ok is calculated to reduce
0 in absolute value.

The first stage proceeds as follows. Equation (1) is "integrated"
using initial conditions X and nominal control Eo’ ‘oo ’GN-I' Then
equations (27), (28), and (32) are integrated back from i = N, with
boundary conditions (33), (34), and (38).

If a° is not close to zero, then, by definition (10), the nominal
control is not close to optimal for the current value of k. To improve
the trajectory (i.e., to get closer to the optimal and reduce ao), (19)
is solved for u: and (22) is used to calculate u, = uf + 5ui, which is
used as the new optimal control in (1). The cycle repeats. If

necessary (see below for the descriptions of the tests to explain this

-14-



a small positive quantity.

Obtain, from main algorithm, the time Neff
when |a (%; t)| becomes greater than 7. 7,

+ Denotes integer .
Ny Yes HALT,
division Is Neff <1 =% opTIMAL FOUND.
,No
Set C=0.5
v i
Set r=0
v i

N, = (Neff Nor

the interval [N,, N]. Calculate the

+
L20T) + Nor =Noy +1 where Nog = 2~ Neff
Apply u=T on the interval [I, N]] and u=u* + B88x on

I\ hence the improvement AV=V (xg; 1)-V (xg;1)

cost V(xqg;1) and

o AV
Is criterion a(%; N|

Yes, Njsatisfactory

C

>c satisfied?

| No Proceed to next
NO 5 Ny = Neff -1 or is Neff =17 teratien of main

[ 'Yes

Increment r by | Is c=0.07? Y, HALT; NO IMPROVEMENT
IN TRAJECTORY
r ATTAINABLE.
Set ¢=0.0
- 7

FLOWCHART I: "STEP SIZE ADJUSTMENT METHOD"




Using a nominal control G (tj); te [to, tf] run a
nominal X (t;) trajectory. Calculate the nominal
cost V (Xo; to). Store the X and U trajectories

and V.
"3

Using boundary conditions 33,34,38 integrate equa-

tions 27, 28, 32 backwards from tf to to, all the while If Neff =1, integrate

minimizing H wr.t.u to obtain u¥ and storing (30), (31) backwards

uX(t;), Bi(t;), Bo(ti). Note also the time Neff from (36),(37). Cal-

when |a(%; t)| becomes greater than % .7 culate Sk from (59).

chosen from numerical stability considerations. Integrate state
equations (1),

i
\ Apply the "step size adjustment method" (s.a.m.)
to obtain a new improved trajectory If the cur
rent nominal control is optimal or if an improved
control cannot be found, then s.am. halts the
computation.

If an improved trajectory is obtained, replace
the old nominal Xj,Ujand V by these new values.

t

FLOW CHART II: THE OVERALL COMPUTATIONAL PROCEDURE



necessity) the step-size adjustment routine is called. (This routine
will not be discussed here, but, for completeness, it appears
schematically in Flow Chart I. It is described in the references, [1],
and [2, section 4].)

If a° is close to zero, and 0 is also close to zero, the problem
is solved.

If a° is close to zero but 8 is not, the algorithm enters its
second stage: k is modified (according to the formula of the next
section) to reduce each component of 8 in absolute value.

III. 3. Determination of 0k

0k is found in the following manner. Jacobson has shown
[1, section 4. 6] that, to second-order, the proper value of Ok is
that which maximizes V(;o,i + Ok, to).+ But

o

T
- T _ .0, 5o 15 T 0
(55) V(xo,k+5k,to)—a +VO 4V 5k+25k vkkék

Therefore the proper value of 0k satisfies

o o _
(56) Vk + kaﬁk =0
or
-1 T
T _ _y© o
(57) 0k~ = ka Vk
o -1

is negative deﬁnitej: so that V2. exists.)

kk kk
Since, in the present algorithm, Ok is only evaluated when

(Jacobson shows that V

fi - ?‘l = 0 (because a® = 0), Vlc; = GT(EN) from equations (29) and (35).
Then, (57) becomes

o-1 -—
(58) 0k = Vi 00xy)

+ McReynolds [4] and Bryson and Ho [13] have obtained similar
conditions.

+ Provided that the linearised system is controllable, and G;E has
full rank.

-17-



Following [1], k is modified according to (58); (1) is then
integrated forward with u, = u1 + ﬁui chosen according to (19) and
(22). If the resultant value of O(XN) is not smaller in absolute value
(component-wise) than 6(§N), choose

-1
o

(59) Ok = -V, 8(xy)

where 0 < € <1, and reduce ¢ until O(XN) is reduced and a° is near
Zero.

III. 4. New Criteria

It is essential that 5xi and 0k be kept small. This ensures that
Gui will be small, and thus the second-order expansions of (6) will
remain valid. If 6Xi and 0k are found to be too large, i.e., if they
invalidate the truncations of the Taylor series in section II, means
for reducing them are presented in Jacobson's algorithms [1, section
4.2.1], [1, section 4.8], [2, section 4]. These techniques apply to
the discrete problem as well as to the continuous.

There are criteria in [1] and [2] for deciding whether to reduce
5xi and Ok or not. However, an addition criterion, required for fixed
end point problems is described below (Test 1).

A criterion, alternative to that in [1], [2] is also given. This
criterion (Test 2) is useful in cases where it is desirable to keep
the 'new trajectory' in the immediate neighborhood of the nomina1.+
Testl

Although 0k is chosen according to (59) (where € is such that

G(XN) is reduced), it may lie outside the range of validity of the expan-

sion (11) (when truncated at second-order terms).

+ Such may be the case when the trajectory must be prevented from
"jumping" to another near by local minimum. In the following section,
an example is discussed in detail where this was found to be necessary.
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At i = 0, (11) coincides with (55). Since both sides of (55) may be
independently measured (i.e., choose 0k and evaluate the left-hand side.
Then integrate (1) as described above and evaluate the right-hand side,
V(zo,i + Ok, t )), (55) may be considered to be a test of Ok.

If Ok is given by (59), then (55) predicts that
-1

(60) Vi, K+ 0k, ) - T =2 - (e - 391087 () VD, 8(xy)

If (60) does not predict the change in V to within a given tolerance,
then € should be reduced until it does.
Test 2

From (4) and (9),

N
Z L+ Fxy) + kTB(xN)

(61) vi=
j=i
N
e A I TP, (g
(62) V! = Z L)+ Flxy) + k- 6(xy)
j=i
Thus
N
(63) ovi= Vi T ) 8L 4 (Rl - Flryg) + (7 60x) - K 6(y))
j=i
But, from (11),
i i, i i 1T i T i 10 Tod
(64) oV =a + vxéxi + Vk5k +5 tixivxxtixi + Ox; vxkék + 50k v, Ok

Since (63) and (64) must be equal, their proximity is a test on the
size of 5xi and O0k. This is because (63) is an exact expression, and
(64) is an approximation dependent on 5xi and Ok.

In order to use (63) and (64) as a step-by-step test of Gxi’ their

form should be modified. This is because (63) involves x,., which is

N

not yet available at step i of the forward integration. The modification
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is a simple one: from (63),

N
(65) 6v° = ) OLY + (Flxyg) - Flxyg)) + (kT B(xy) - KT 0(xy)
j=0
Thus,
i1
(66) ovi - 6vO = Z 61
j=0
Similarly, ovi - 6v° may be calculated from (64).
(67) 6vi - 6vO = [al + Viox, + viok + Lox Vi 6x, + 6x1V: Ok
x 1 k 2 771 xx i i xk

1s T i o o 1, T 0
+ 50k kaﬁk] - [a” + Vkék + 50k kaék]

The last equation may be simplified somewhat by noticing that

. s
V; = Vl‘z whenever 0k is evaluated. Thus
i O _ i (0] i 1 T i 5 T i 6
(68) Ov: - 0vP = alt - a® + v 0x, +30x Vv, Ox, + 0x V_ . Ok
x 1 2 i kx 1 i xk
1 T.i 1 T.o0
+56k vkkék Eék vkkék

Then, test 2 is performed by determining whether (66) agrees
with (68) within a given tolerance. If the test is failed+ then 0k should
be reduced, or, if 0k is not present, 5xi should be reduced by the
step~size adjustment method.

This test is particularly simple to apply in cases where

L(Xi’ u., ti) = 0.

+ Failure of the test at ti (0 < ti <t..) allows one to discontinue

N
integration of this 'trial trajectory' at t, instead of integrating all

; this can save considerable computer time.

the way to tN’
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IV. Numerical Example - Comparison with McReynolds' Successive
Sweep Method
IV.1l. Statement of the Orbit Transfer Problem
An orbit transfer problem [4], [5], [7], [8], [12] has been solved.
In this problem, a control sequence must be found to maximize the
radial distance of a rocket from the sun, with the terminal condition
that the rocket be in a solar orbit.
x; is a 3-vector, whose components represent radial
distance (from the sun), radial velocity, and anguiar
velocity, respectively, normalized so that the initial

condition (in earth's orbit) is

N) = , (8 = 01is the condition for a
1

SERN RV

state to be in a stable orbit.)

Tl=o0
F(xN) = Xl,N Thus,
szl,N+klel +k262
*2,i
2
“i *3,4_ 1 i
f = —-*—-2—+Asinu.
1.4 x !
’ 1,i
XH .X., . .
-—2-’—1—3’-1 +A1cosu.
Xy 3 i

’
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where

i . 1405

AT =15 S07487(,

The time interval [0, tN] is given.

Note that ?l(xi,ui) = f‘(xi) + Gl(ui)- Thus H' = V:l

~ i

(F(xi) + G (ui))
~ i .

and Hux and fuX vanish.

This statement of the problem was inserted into (46)-(54) with terms

of order higher than At dropped. The equations become:

(69) =i =viflal

(70) B = —Z'1¥fv$

(71) B, = -Z‘l‘ffvil

(72) al =ty virlGlw) - GIE)at

(73) Vi = vj{“ HVEFLE () ¢ (ci(u’:) - Gi(_&i))Vi:;{l)At

(74) vi=vithy (Gl - Gl ) vitlat

(75) vio=vitlhy (%X(Ei)v;’(l - By AB,)at
T

(77) Vi{x = V:{l ¥ {Vi:l%xx(;i) + i«“’x(EiT)v;': " Vi:;l"fx(;i) + ﬁ;erl}At

sk .. ~i . . . .
where u. was found by maximizing H which was equivalent to maximizing

V;:- Gl(ui), which, in turn, was equivalent to finding the maximum of
V1+12 sinu, + VH-1 cosu,
i X, 3 i

’
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Thus

3 ’ * . |<
V1+12 cosu. - V1+1 sinu>.‘ =0
X, i x, 3 i
or,
&
(78) u, = a.rcta.n(V1+1 /V1+1

Terms of higher order in At were dropped on the assumption

that such terms were negligible in comparison with those of order At.

B3
In the forward integration phases, u; = u, + Gui was computed

directly by maximizing

i+l + Ox T 1+1 + Ok V1+1

(79) H(x +5x » U, V +1 Kx )

i+l +5T i+

= (V] Ly 5kTV1+1)(F(x +0x,) + Gl (u,))

+1
with respect to u,. Note that 6Xi+1 should be replaced by (14), which
becomes
_ - = 15 T =
(80) 6Xi+1 = Gxi + At[(G(ui) G(ui)) + Fx(xi)ﬁxi t5 6Xi Fxx(xi)éxi]

However, this is of higher order than the degree of approximation,

and it is satisfactory to replace 0Ox.

irl in (79) by 5xi.

The new criteria described in the previous section were experi-
mentally applied. Test 1 appeared to be essential for the algorithm
to converge. Without it, Ok was often chosen too large. Test 2 was
found to be helpful and time saving. A more detailed discussion will
be found in section V.

IV.2. Comparison with Successive Sweep Method

This algorithm converges somewhat faster than McReynolds'

Successive Sweep Method {4], [5], [6] on this problem, starting from

the same initial nominal. This may be because the two techniques
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differ primarily in the minimization:rand fi - f_1 and Hi - ﬁl terms which
are present here and absent from the successive sweep method. But,
close to the optimal, those terms are small, and the minimization
yields results which are close to McReynolds' method for choosing
5ui. Thus, close to the optimal, the algorithms are very nearly the
same. Earlier in the computation, the terms are large, and the
minimization permits the present routine to take larger steps. Thus,
this routine is able to get to the vicinity of the nominal in fewer itera-
tions than the Successive Sweep Method, and once there, to take just
as many additional iterations to converge.

In addition, this routine does not evaluate Huu (or A) until after
a minimization has been performed. Thus Huu is always negative
(definite). McReynolds evaluates Huu on the nominal trajectory, and
so, he must either choose his initial nominal so that Huu is negative,

or he must invoke a device to partially overcome the difﬁculty.+

V. Numerical Results

V.I. Discussion of the Trajectories in Tables 1-4
Tables 1-3 contair{ optimal trajectories calculated for the problem

of the previous section By means of the algorithm described above.

(The computer program is presented in detail in Appendix B. See

the section on the BETA subroutine for an explanaticn of ‘31’ BZ’ [33. )
The value of 3. 32 was used for tN in order to compare results

with [4] and [5]. The other value, 3.3194 was determined in [12],

where the authors solved a minimum time problem. Their problem

t. ’H;u + Bll is used in place of H:m where B' is chosen to go to zero

as the nominal is approached. $ee [5, page 596].

+ Which becomes a maximization in this problem.
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was identical with the present problem, except that they specified
xl(tN) = 1.525 (corresponding to the orbit of Mars) as a constraint
and left tN free. Our results agree most closely with those of [12].
(The normalized values of VZ agree with Mto) given in [12], to 3
figures. )

The rather large differences between the results of 100 time
steps and of 400 steps indicate that 100 "Euler integration" steps are
not really sufficient to model the continuous time dynamic system.

It should be noted that the greatest discrepancies occur in the second-
order quantities. But from (69)-(78), those quantities are the only
ones whose exact equations have high order At terms near the
nominal. (Near the nominal, £ - Ei is small or zero.) This may
account for the difference in values between our {31, [3.2, and 53

and those given by McReynolds [5].

It is interesting to note that many different attempts have been
made to solve this problem [4], [5], [7], [8], [12]. Our results
agree most closely with those quoted in [12] and are more detailed
than those previously published.

Table 4 contains a trajectory which maximizes V without regard
to terminal constraints for nearly optimal values of kl and kZ' It is
interesting to note that the maximum obtained for V is far from the
maximum V obtained in Tables 1-3, and the 8's are not zero. Thus
the free end point problem, with k1 and k2 set to their optimal

values has at least two local maxima; the one maximum coincides

with the point 8 = 0, while the other does not. (We have found that
if, starting with this other maximum solution, and the optimal k's,

the k's are changed successively to reduce |6]|, using the algorithm,
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then the optimal solution to the problem is obtained. I.e. the k's are
adjusted away from their 'optimal' values, but again return to these
optimal values, at which stage the 'correct' minimum of V is
attained and 6 = 0.)

On the average, the program took approximately 3 seconds per
iteration for the 100 step program and 12 seconds per iteration for
the 400 step program. For this purpose, the "number of iterations"
is defined as the number of times the program went into BAKINT
(see Appendix B) i.e., the number of times (27), (28), and (32) were
integrated. Thus, an iteration includes at least one but possibly as
many as 9 times through FORINT, the subprogram that inte-
grates the state equations (1) forward. Also, an iteration may
include DKCALC, the program to integrate (30) and (31) and calcu-
late Ok by (59).

In the earlier versions of the program, where Test 2 was
absent, iteration times averaged as much as 6 seccnds for 100 step
trajectories. More details on this fellow.

The nominal used to compute the trajectory in Table 1 was the
nominal McReynolds used: k; = -1; k, = 1; u(t) = 1. 57078 for
0 St < 1.66; ult)=5.7124 for 1,66 <t < 3,32, Convergence to
lei(xN)l <107° (i =1,2) required 15 iterations.

The control history of the nomiral used for Tables 2 and 3
was the optimal trajectory computed in [5]. (It was linearly inter-
polated to 100 points, and then expanded to 400 pcints by repeating
each value four times). For Table 2, KI = -1,41936541, -EZ = 1.264609,
and convergence required 10 iterations. For Table 3, El = -1.399631,

EZ = 1.260031 (optimal values from [4]), and 11 iterations were required.
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Table. 4 was started from a nominal consisting of the control
history of Table l's nominal and El and EZ the same as those of
Table 3. It took 6 iterations to "converge."

V.2. Uses of Tests 1 and 2

With neither Test 1 nor Test 2 present the algorithm did not
converge. Constraining each new trajectory by the requirement that
Test 1 be satisfied was sufficient to ensure convergence. Because
this constraint was usually effective - i.e., many values of 0k were
rejected - this problem appears to be very sensitive to changes in
the multipliers k.

Pairs of runs were compared: of each, one had only Test 1;
the other had both tests. The comparison indicated a certain
redundancy between the two tests. A large number of trial Ok's were
rejected by both Test 1 (where that was the only test) and Test 2
(where both tests existed.) In fact, the same values of 0k were ulti-
mately accepted by the two programs, and the programs generally
converged to the same optimal trajectory in the same number of
steps.

However, the redundancy was not complete. There were Ok's
that were accepted by Test 2 and rejected by Test 1.

But the redundancy is helpful. Test 2 can be invoked often in
the forward integration phase, while Test 1 can only be invoked after
the forward integration phase is complete. Thus Test 2 can save
execution time. This time appears to be quite significant: with both
tests present, a 100 step iteration took about 3 seconds. With only
Test 1, a 100 step iteration took - on the average - more than six
seconds. (As pointed out in the footnote on page 20, the forward

integration of the system equations can be terminated as soon as
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Test 2 fails. However, Test l requires that the integration be performed

up until t This accounts for the 'time saving' when Test 2 is in-

N°
cluded.)

A difficulty was encountered in using the tests. As the algorithm
approached the optimal, steps and changes in parameters tended to
grow rather small. Then all tests which involve differences of large
quantities become less reliable - in fact, excessively conservative.
Thus there should be some means of disabling the tests when 5xi or
0k are sufficiently small.

Once the difficulty was recognized, Test 1 was disabled when
6v® = v° - V° was less, in absolute value, than 10-670. Test 2
was disabled when the absolute value of

a®+ V20K + 30k VD Ok
was less than 10-670.
V. 3. Behavior of the Algorithm

The existence of the maximum in Table 4 may be illustrated by
analogy with a static maximization of a function of a single variable.
See figure 1.

In order to maximize V(u), one may approximate V with a
second-order Taylor expansion in the neighborhood of E, a nominal
value.

(81) V(w) & V(@) + V@) - W) + 5 V@)W - 9>

The value of u that maximizes this is given by

0= V(@) +3 V@) (a - 7

or
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V'(u)

(82) u=u- V "(T)

Equation (81) may be used to predict the improvement in V using

(82).
-2
(83) Viw) - V(@) = -3 Y

which is positive for V"(u) < 0. Then (83) may be used as a criterion
for optimality: when (83) is zero, u is a maximum.

If u is at point A, and the local maximum at point B is the one
desired (rather than the one at point F) some means must be employed
to guarantee that (82) will produce a value of u in the neighborhood of
B. A value near E will eventually converge to F. Thus (82) should

be replaced by
— 1
(84) =1 - edu)

Then, (83) becomes

-2

2 _ V'u
€) Vi(a)

(85) V(u) -~ V(u) = (-é—e

Thus, an improvement may be guaranteed at every stage if
(84) is used with proper choice of €, if the initial nominal lies some-
where to the left of point D.
If the nominal is to the right of point E, the algorithm will
tend to point F.
Points between C and E are problematical because V'(u) is
not negative-deﬁnite-'-. In neighborhoods of C and E, (84) and (85) are

not useable.

+ In the case of vector u, an increased cost may be obtained even if
V"(u) is non-negative-definite. In the scalar case this is not possible.
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This is not perfectly analogous to the algorithm for discrete-
time dynamic optimization algorithms, but some comparisons may
be drawn. In the discrete dynamic case, u may be thought of as an
N-vector (N = 100 or 400). Then V'is a vector, V" is a matrix, and
€ represents the step-size adjustment method. Figure 1 may be
thought of as a graph of V as a function of u for constant, near optimal
k. Point B is the local maximum where 61 =8, =0, and is shown in
tables 1-3. Point F is the maximum of table 4.

Behavior due to a pdint analogous to E has been observed.
Iteration began at point A, for near optimal k. The next value of
u was to the right of point D (because V calculated at thaf point was
greater than that of Table 1. In this case, N = 100, tN = 3.32). In suc-
cessive iterations, V continued to increase, as did |91| and IOZI
because u was chosen to maximize H. However, it was impossible
to drive a° (analogous to (85)) below a certain value. After a few
iterations, a® began to increase. Finally, a® jumped from a typical
value of less than 10_3 to more than 300 in one iteration. At that
iteration, elements of V__ were of the order of 5000. This situation
corresponds to a point near C or E where Vuu is near singular (the
singularity manifests itself in the 1arge values of V., and a®).

Thus, in order to guarantee proper convergence iterations
must be restricted to the neighborhood of the relative minimum
desired. In the present algorithm, the restrictions are accomplished
by:

1) The choice of a 'sufficiently good' nominal.

2) Minimization of H(u) (rather than the use of Ou = —Hx-nlJ.Hu
as in [5], [6], [9] and [14]).

3) Test 2.
| -30-
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V.4. Numerical Values of Tolerances

ETA, the criterion of optimality of ao, was set to 10-2 and good
results were obtained. Late in the iteration process, a® was always
less and generally considerably less than this value, so that this
constraint is rather ineffective. Earlier in the process, little is
gained by requiring a® to be extremely small, since that would
require precise calculation of quantities which must change when
k is changed by 0k, aﬁd which are non-critical.

Satisfactory results were obtained with CK and TOL, the tolerances
of Test 1 and Test 2, respectively, set to 20% and 30%. At less than
10%, it became impossible to take steps sufficiently small in 5xi to

satisfy Test 2. (This was found with N = 100.)
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100 Time Steps

t u x1

0 L4430 1

. 166 .5188 1,0008
. 332 .6073 1,0044
.498 L7097 1, 0121
. 664 .8269 11,0252
. 830 .9592 1, 0446
. 996 1. 107 1, 0711
1. 162 1,271 1. 1047
1, 328 1, 460 1, 1455
1. 494 1,730 11,1929
1. 660 2.886 1,2459
1, 826 4,493 1, 3008
1. 992 4,765 11,3508
2,158 4,913 1. 3945
2.324 5,023 1, 4315
2.490 5,116 1, 4619
2. 656 5.196 1, 4860
2.822 5.269 1.5039
2,988 5,335 15162
3.154 5.398 1.5233
3,320 — 1, 5257
Optimal V = [, 52572699
k, = -1.40339248
k, = 1.26501024
- _6

el = ,75x 10
6, = .11x,1o"6

. 0134
. 0353
. 0649
. 1011

. 1419

. 1853
. 2288
.2701
. 3071
. 3347
. 3157
. 2786

2390

. 1991

. 1600
. 1225
. 0872
. 0546
. 0254
. 0000

1, 0201

—

P N el Py Y
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. 0366
. 0478
. 0520
. 0479
. 0349
. 0129
. 9823
. 9433
. 8924
. 8370
. 8032
. 7811

L7675
. 7611

. 7609
. 7661
L7762
. 7908
. 8096

. 8890
L5777
. 2963
. 0857

. 96818

. 93356
. 95639
. 0117

. 1031

. 2105

. 3356

. 94316

. 94982

.. 85152

. 64554

. 36222

. 045050

. 27469
. 58597
. 88384
. 1608

. 4034

3.32
vx
3 :

2, 0604
1, 4229

. 82311

. 34816

. 055367
-. 048480
. 0036793
. 17505

. 44689

. 81108

1, 2647



. 332
. 664
. 996
1. 328
1. 660
1. 992
2,324
2,656
2,988
3,320

. 332
. 664
. 996
1. 328
1. 660
1. 992
2,324
2,656
2,988
3.320

. 332
. 664
. 996
1, 325
1. 660
1,992
2, 324
2,656
2,988
3,320

v
X, X

1l

17..382
4, 024
10..142
6, 5844
3, 8740
1. 6309
1. 0014
", 62113
_3 -30776
1077 x. 20185
-. 33000

V

11, 763

10, 134
7.9954
5,7024
3,.5734
1. 2686
. 68877
. 40892
. 23166
. 10279

0

v
k)

6.2739
5.6858
4,9673
4, 0578
2,8729
. 73108
. 29045
. 13863
. 061401
. 020738
0

VX
x1*2

. 0412

. 9021

. 6729

. 3821

. 6629

. 93085
. 43781
.20735
. 095264
. 037090

0

N R OO0

v

X

Zkl

1. 8948
3. 2408
3.8989
3,7125
2.8099
1. 3089
1, 0293
. 95075
. 95901
. 98678
1

v
kk,

1.1584
1. 0802
. 97793
. 83754
. 63669
. 28510
. 19060
. 10495
. 053471
. 020602
0

Table 1

25,681

19, 323

12, 489
6.8543
3.2567
1. 2301
. 83305
. 68267
. 51340
. 29087

0

x3k)

16, 457
. 460
. 8678
. 3684
. 5868
. 5331
. 0404
. 84940
. 61959
. 33387
0

[
p— s O ONO W

N
kyk,

. 34241
. 33200
. 31744
.29576
.26168
. 20310
. 13001
. 081612
. 047200
. 020546
0

..34..

2,7053
2,5363
2,6660
2,3731
I, 5047
. 40562
17979
. 14331
. 10731
. 040093
0

x k,

2,0921

1, 8111

1, 4737
1,1258

. 80242
. 45836
. 36011
. 30271
. 27821
. 26806
. 26537

4,1297
5,9353
5.9028
4,.3792
2,5309

1. 0976

. 74599
. 37114

. 028400
. 13086

. 47188
. 60603
. 62691
. 51215
. 28264
-. 023940
-.16333
-. 19132
-. 15414
-. 084390
0

v

X3X

3

36,371
26,238
15,733
7.5536
2,7188
. 34899
-. 72441
-1, 1303
-1, 0641
~. 61585
0

X3

2, 6138

2,0839
1. 5026
. 97654
. 59946
. 38236
. 56995
. 74612
. 88625
. 97275



. 166
.332
. 498
. 664
. 830
. 996
1,162
1, 328
1, 494
1. 660
1. 826
1. 992
2,158
2,324
2,490
2,656
2,882
2,988
3,154
3.320

Optimal

Table 2

‘=  Final Time = 3,32
x x Vv A\ AY
2 3 x Xy X3

0 1. 1. 8803 . 93239 2, 0340

. 0139 1. 0200 1. 7254 . 94700 1, 7201
.0361 1,0362 1, 5729 . 93843 1. 4045

. 0659 1, 0470 1, 4273 .90323 1. 0982
. 1020 1. 0507 1. 2942 . 83985 . 81261
, 1425 1, 0464 1.1790 . 74911 . 55832
. 1855 1. 0332 1, 0857 . 63410 . 34405
. 2285 1. 0114 1. 0160 . 49963 . 17548
. 2693 . 9811 . 96936 . 35134 . 054908
. 3059 .9428 . 94344 . 19473 -, 018536
. 3335 . 8927 . 93488 . 034410 -, 048200
. 3149 . 8375 . 94036 -, 12632 -. 039267
. 2780 . 8039 .95720 -. 28580 . 0028600
, 2386 .. 7818 . 98321 -, 44323 . 074425
. 1988 . 7682 1, 0168 -. 59804 . 17286
. 1598 L7617 1, 0569 -, 74962 .29642
. 1224 . 7613 1, 1029 -. 89717 . 44398
. 0871 . 7664 1, 154] -1, 0396 . 61486
. 0546 . 7765 1, 2102 -1, 1755 . 80871
. 0254 . 7910 1, 2709 -1, 3029 1, 0253
. 0000 . 8097 1. 3356 -1, 4194 1. 2646

400 Time Steps
u x;
L4332 1
. 5072 1,0010
.5937 11,0049
. 6936 11,0132
.8080 11,0269
. 9371 1,0469
1, 081 1, 0740
1, 241 1. 1082
1. 426 1, 1493
1,683 1. 1970
2, 645 1, 2502
4,437 1,3048
4,732 1,3542
4,885 1,3972
4,999 . 11,4337
5.093 1, 4636
5,176 1, 4872
5.250 1. 5047
5, 318 1, 5165
5,382 1,5232
1. 5254
\' 1, 52537493

D DO© F F
N = N
1} n

-1, 41936325
1. 26460750
-.33x 107

.37 x 1077
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Tabile‘ 2

t v v v v v v
| R o) X\ Xq X% Xy%3 X3%3

0 25, 668 6. 4714 36, 811 2. 9982 6. 1215 51, 271

. 166 23. 004 7. 3407 32. 083 3. 0133 7. 5962 43, 827

©332 20, 020 7. 8261 26. 940 3.1994 8. 4188 35. 869

. 498 16. 875 7. 8472 21,711 3. 4165 8. 5199 27. 975

. 664 13,767 7. 4030 16, 748 3. 5261 7. 9529 20. 696

. 830 10, 887 6. 5734 12, 357 3. 4270 6. 8843 14, 457

. 996 8. 3712 5. 4944 8.7324  3.0840 5. 5498 9. 4885
1. 162 6. 2725 4, 3143 5.9299 . 2.5329 4.1859 5. 8081
L, 328 4 5578 3. 1493 3.8821 1. 8550 2.9672 - 3.2561
1. 494 3. 1074 2. 0442 2. 4311 1. 1295 1. 9686 1. 5713
1. 660 1. 6814 . 96700 1. 2982 " 42449 L1349 . 39922
1. 826 1. 2733 L 66432 . 95119 . 26681 . 91097 +e,"31000
1.992 1. 0094 . 44680 85425  .17135 175975 .. 68761
2,158 - 80110 §30614 . 77199 114147  .58102 v, 95063
2.324 . 62423 21096 .69358 13159 . 39144 -1, 0988
2. 490 . 46343 -14436 . 61088 .12113 20821  -1.1304
2. 656 .30967 . 096961 " 51862  .10202 050278  -l.0504
2. 822 .15707  .062838 . 41337 1073672 -,063771  -.87208
2.988 .0014626 . 037691 129278  .040783  -.11762 -. 61715
3. 154 =, 16020 . 017914 J15530  .012180  -.098794 -, 31479
3. 320 -. 33005 0 0 0 0 0



. 166
. 332
. 498
, 664
. 830
. 996
1,162
L.328
1, 494
1. 660
1, 826
1. 992
2,158
2,324
2,490
2,656
2,822
2,988
3,154
3,320

'
x k)

16, 324
15, 077
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. 23115
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. 94985
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. 48265
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2,5261
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1.9757
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. 26792
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.. 86650

. 80765
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. 97138
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.162
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. 490
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320
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8. 8160
8. 3022
17,7593
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6.5494
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5.1333
4,3363
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. 29083
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. 4088

. 3075
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kyk,

A%
. 43881
. 42715
. 41432
. 39995
. 38363
. 36492
. 34336
. 31828
. 28837
. 25032
. 20465
. 17086
. 13187
. 10454
. 082684
. 064096
. 047855
. 033524
. 020865

. 0097293
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1, 7499
1, 8270
1, 9211
2, 0551
2,3043
2,9216
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35,639
~9.1970
-14,033
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. 92861
., 92017
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1, 0069
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1. 5759
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1100, Q4
-21, 079
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~366, 27
-781. 63
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1. 2998
1. 3739
1, 4882
1. 6473
1. 8637
2, 1662
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71, 209
-23, 071
25, 854
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-+, 13581
21, 075
60, 962
153, 11
442, 30
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Optimal

400 Time Steps
u %
. 4333 1
.5074 1. 0010
. 5938 1. 0049
, 6937 1. 0131
. 8080 1. 0268
. 9372 1, 0469
1, 081 1, 0739
1, 242 1. 1081
1. 426 1, 1493
1, 683 1. 1969
2, 645 1, 2501
4, 437 1, 3046
4,732 1, 3540
4, 885 1, 3971
4,999 1, 4335
5.093 1, 4634
5,176 1, 4870
5,250 1, 5045
5,318 1, 5163
5,382 1, 5230
e 1, 5252
V =1,52516085
kl =-1, 41910912
k2 =1, 26441935
' -5
91 ==, 10x 10
ez ==, 26 x 10—6

. 0139
. 0361
. 0658
. 1019

. 1425
. 1854
. 2284
. 2692
. 3059
. 3334
. 3148
. 2779
. 2386
. 1988
. 1598
. 1223
. 0871
. 0546
. 0254
. 0000

1. 0199
1. 0362
1. 0470
1. 0507
1. 0464
1. 0332
1, 0114
. 9812
. 9429
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. 8040
. 7819
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. 7617
. 7614
. 7665
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. 7911
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. 34391
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. 80858
1, 0252
1. 2644
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Table 3
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32,064
26,924
21, 698
16..739
12, 351
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. 14142

. 13156
12111

. 10201

. 073662
. 040778
. 012178

——ND_ OO0 w1

. 1205

. 5935

. 4148

. 5154

. 9484

. 8805

. 5469

. 1839

. 9660

. 9680

. 1346

. 91091

. 75970
. 58099
. 39141

. 20820
. 050286
. 063752
. 11760

. 098777

51,

43,
35,
27,
20,
. 449

. 4838

. 8055

. 2549

. 5708

. 39905
. 30994
. 68749
-. 95047
-1,
-1,
-1,
. 87192
. 61704
. 31473

—
- W O K

239
799
846
958
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. 53037
. 40861
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1. 0015

1. 0071

1. 0167

1. 0294
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1. 0672
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1. 0747
1. 0686
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Table 4

_— Final
*3
!

. 0233 1, 0055
. 0489 ,9993
.0706 9812
.0826 .9529
.0833 .9200
,0722 8850
, 0508 .8525
. 0203 8221
0184 ., 7956
. 0650 7737
. 1194 .7572
. 1818 . 7472
, 2532 7452
.3349 7536
. 4294 7765
. 5404 ., 8211
.6738 .9021
.8374 11,0534
.0316 I, 3731
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61 =-1,0620840
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24,
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533
827
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0216

962
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034

21, 040

0
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-13,
-35,
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-41,
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-9.
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927
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572
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k) Xk x3K) k2 x5k, x5k,
. 63978 _1.8778  -,73634 28581 1, 6463 . 11388
. 058647  -1,8077 . 47180 -.55295 1, 3166 -1 2612
. 22644 _1. 6848 1. 3543 -1, 4659 . 65052 -2, 5802
. 20785 -1, 6316 1. 9042 -2.2572 -. 18701  -3,5000
. 055229  -1,6358 23214 -2,9432  -1,0756  -3,9021
. 11039 -1, 6351  2,7404 -3.4968  -1,8585 -3, 6752
. 14652 -1,5086  3.2172 -3,7835  .2,321l  -2,7753
. 10870 -1, 1360 3, 6343 -3, 6113 _2.2884  -1,3815
. 77093 -.50338 3, 6627 -2, 8160 -1, 7731 . 081057.
. 8439 2.9461  2,8218 -1, 1017 -.96980  1,1273
0 1 0 3, 8635 0 1
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17173
. 17168
. 17005
. 16428
. 15402
. 13853
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. 070021
. 043426
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. 22694

. 22658

. 22270

-46-

. 21388
. 19916
. 17695
. 14737
. 11390
. 081529
. 048409

0

. 30997
. 30454
. 29477
. 28121

. 26008
. 22827
. 18608

. 13910

. 095279
. 053988



VI. Conclusion

A new discrete algorithm has been derived which is analogous
to the continuous algorithm of [1] and [2]. Extensions to the latter
(Test 1 and Test 2) have been developed to ensure that the new
iterate is in the neighborhood of the current nominal.

The algorithm has been used to solve a non-linear, optimal
orbit transfer problem. This problem has been attempted, and
solved, in various forms, by a number of investigators using dif-
ferent computational methods.

The results obtained in this paper agree most closely with

those of [12].
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Appendix A
Continuous Results from Jacobson

The following is a statement and solution of the continuous-time
optimal control problem solved in [1]. The notation has been
modified to conform to that of this paper. Thus some expression
involving derivatives have been transposed, and ™ has been placed
over certain symbols to coincide with section III, 1, above.

Problem: given that

o~

A~1 x = H(x,u,t) 5 x(t ) =x

Find u(t), t € [to, tf] to minimize

t
o f o~
A-2 V(xo, to) = S‘ L{x,u, t)dt + F(x(tf))
¢ ,
o
while satisfying
A-3 8(x(t ) = 0

The constraints (A-3) are adjoined to the cost functional (A-2):

A-4 Vix ,t
o’ o

)=V + kT e(x(t,)

The solution is:

_ -~—1 ~ n/I‘
A=5 pl - uu(Hux fuvxx

_ ~ulh’1‘
A6 P 2 Huufu ka

. "~ ~

A=T7 «a=H=~-H
A-8 v o=H +F-Hv,
A=9 -V, = (E-1v,

-.49..



i o ST T
A-10 Vo = +plinv
T % ~-laT
A-ll ka N kaquuufu ka
A-12 v =8 +fv ev F -\ v )Ta m sy
XX XX X XX XX X ux u XX uu ux u XX

~d ~ ~
where H=L + fo, and derivatives of H are taken with VX constant, i.e.

~ ~ ~
H =L +V_f
X X X X

The boundary conditions of (A-7) through (A-12) are the same as

equations (33)-(38) above.
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Appendix B
The Computer Program

Implementation of the algorithm on the problem described in
section three required the use of a computer. A program ‘has been
written for the IBM 7094 in FORTRAN IV, which consists of several
subprograms. |
1. MAIN

This program is described in Flow Chart II in general outline.
This program coordinates the algorithm. It starts by setting initial
quantities, and quantities which do not change throughout the compu-
tation. Included are input numbers, constant elements of 'fx and ?xx’
and constant boundary conditions.

The routine FORINT is called, which integrates the state
equations (1). On the first iteration, the initial nominal control history
is used. Subsequently, u, is calculated in FORINT. The performance
index and terminal constraints are evaluated.

The calling of FORINT is part of the "step-size adjustment", as
described in [1] and [2] and Flow Chart I.

Once a suitable trajectory is calculated, it is printed out and
BAKINT is called to integrate the equations for ai, Vi, and Vix. If
thé absolute values of a° and the terminal constraints are less than
ETA, ETAl, and ETA2, respectively (which are input quantities),
iteration éeases. Thé routine BETA is called, which calculates the
optimal feedback vector B such that on a path slightly perturbed from
the optimal, Ou = ﬁTﬁx.

If a° is not smaller than ETA in absolute value, the program

transfers to the forward integrator to improve the nominal trajectory.

-5]-



When the trajectory has been optimized for a given value of k,
i.e., when a® is driven to less than ETA, the routine DKCALC is

and V; equations, and calculates

i
kk k

0k according to (59). Tne value of € is originally 1., but if each

called, which integrates the V

component of 6 is not decreased (by the introduction of 0k) in

absolute value, and if the change in performance index i‘s not within

a tolerance (an input quantitir) of the value predicted by (60) (i.e., if
Test 1 is failed), then € is reduced by half and the forward integrator is
called again to calculate 8 and V. When the criteria are satisfied, k

is replaced by k + 0k and the program transfers to BAKINT.

2. FORINT

This routine integrates (1) forward. It calculates u, by maximizing

Hx; + 0,0,k + 0k, 1) = VI G+ B

i+ k+ Ok)i(x; + Ox,uy,t,)

+1°

which is equivalent to maximizing

E=C sinui + Dcos U, where
_ il = -

C = sz (xi+1 + 6Xi+1’k + 0Ok)
il = -

D= VX3 (xi+1 + 5xi+1,k + 0OKk)

and 0k. However,

C and D are calculated by expanding V::l in Ox, |

5xi is used in place of Ox, See section IV.1.

i+l°’

At the maximum of E,
-1
u, = tan ~ (C/D) R

but this also determines a minimum. The maximum is chosen simply

by requiring that E be positive.
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Test 2 is ‘applied by determining whether (11) is constant (within
a tolerance TOL) over t"irrie.+ (It should be constant because 1iis
zero.) Because this test is time consuming, it is done at rare in-
tervals.
3. BAKINT

This routine calculates u; according to (19), (in a similar
fashion to that of calculating u, in FORINT) and integrates (27), (28),
and (32) with (33), (34), and (38) as boundary conditions. It prints
out ifs results.
4. DKCALC

| This integrates (31) and (32) with (36) and (37) as boundary

conditions, and prints values of Vik, Vi(k' At t = 0, it calculates
0k according to (58).
5. START

This short routine accepts input information. The input must
include the maximum number of iterations, the number of time steps,
the tolerances ETA, ETAl, ETAZ2, CK, and TOL, the initial value
of '1:, and the initial nominal control hiétory.
6. BETA

The optimal perturbation feedback law for small deviations
from an optimal trajectory is given by (22), which, in the present

problem, may be approximated by,

-1,
bu, = -uf divitlex, + vitley) |
i unu xx i xk Y

From (58), and since V1i< =6% = 0onan optimal trajectory,
-1
_ _yitl i+l
%= Vi Viee P

+ or from (68), OV, - 0V _ = 0.



To first-order in At (in a problem which originates from a

continuous problem). this may be written

-1
IR TSRS
G_k = Vi Vi 9%

See section IV. 1.

Thus,

-1 -1
TR PR TS R VORI T Rl |
bu; = “H £V~ Viae Vi Viex 1%

The coefficient of 5xi is calculated in BETA, and printed as (31,

‘32’ ﬁ3'
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